

DBEngine (Version 3.0)
Custom Control Reference Guide

Copyright (C) - 1993
by

Douglas A. Bebber
All rights reserved

Table of Contents

Introduction .. 3

DBEngine Custom Control Reference ... 5

Appendix - DBEngine / Paradox Engine Error Codes .. 42

Introduction
2

What is the DBEngine?

 The DBEngine product is a Microsoft Windows compatible Custom Control
(DBENG3.VBX) designed to provide Visual Basic and Visual C++ programmers with a
sophisticated, yet easy-to-use tool for building database management applications.
Using the DBEngine, Visual Basic and Visual C++ programmers can build
sophisticated multi-user, network compatible database management applications
and distribute the DBENG3.VBX (DBENG3R.VBX renamed as DBENG3.VBX) file with
those applications on an unlimited, royalty-free basis. The DBEngine product presents
the Visual Basic and Visual C++ programmer with a simple, easy-to-use interface to
Borland International's Paradox Engine. The Paradox Engine is a complete multi-user,
network compatible API written in the C programming language. The DBEngine
product is a visual Custom Control interface to the Paradox Engine specifically
designed for Visual Basic and Visual C++ programmers. DBEngine (version 3.0) is
compatible with:

+ Microsoft Windows 3.X.
+ Microsoft Visual Basic 1.0, 2.0 and 3.0.
+ Microsoft Visual C++ 1.0.

 This documentation describes the DBEngine (3.0) custom control. It is the
official reference documentation for the DBEngine (3.0) custom control. For
information on programming and the DBEngine custom control (example programs,
etc.) please see the DBEngine Programmer's Guide (Visual Basic and/or Visual C+
+ edition.)

Douglas A. Bebber
June 6, 1993

Trademarks
3

Visual Basic , Visual C++, and Windows are registered trademarks of Microsoft Corporation.
Borland C++ is a registered trademark of Borland International.
PARADOX is a registered trademark of Borland International.
PARADOX Engine is a registered trademark of Borland International.

DBEngine was written in Borland C++ (version 3.0) by Douglas A. Bebber. Address inquiries and
bug reports (preferably Dr. Watson along with a listing of the suspected code) to

Douglas A. Bebber

Internet mail address(s):
DBTech@aol.com
72123.3661@compuserve.com

U.S. Postal Address:
Douglas A. Bebber
2420 Briar Oak Circle
Sarasota, Florida 34232

Testing

 This release of the DBEngine custom control (version 3.0) has been tested on a variety of 286,
386, and 486 machines. It has been tested on machines connected to Novell and Lantastic
LANs. If you discover any bugs or problems, I would appreciate a Dr. Watson UAE (General
Protection Fault) report sent to my Internet address. Please describe your operating environment
in detail and include a listing of your CONFIG.SYS and WIN.INI files.

Note: DBEngine based programs will not be able to execute properly if the PXENGWIN.DLL file
is not in a directory included in your MSDOS PATH statement (WINDOWS\SYSTEM is
recommended). You must also have SHARE.EXE loaded to properly run the database engine
environment. Version 3.0 will run with the Paradox Engine 3.X version of (PXENGWIN.DLL).

Note: DBEngine will only execute in Windows Standard and 386 Enhanced modes.

Compatability and New Releases

 The DBEngine (version 3.0) is compatible with Borland International's Paradox Engine version
3.X.

Technical Support

 Registered users of the DBEngine product can get free product technical support by calling
(813) 378-3760 Monday - Friday 8 A.M. - 6 P.M. CST. Before calling for technical support have
your serial number handy.

 Correspondence with the Douglas A. Bebber can be done via CompuServe. Direct all
correspondence to User ID: 72123,3661.

Correspondence with the Douglas A. Bebber can be done via America Online. Direct all
correspondence to user DBTech.

How to Register

4

 You can obtain a registered version of the DBEngine 3.0 Custom Control for $75.00 plus
shipping and handling costs. For more information contact:

Douglas A. Bebber
2420 Briar Oak Circle
Sarasota, Florida 34232
(813) 378-3760

DBEngine Custom Control

5

DBEngine

Description
 DBEngine objects provide Visual Basic and Visual C++ programmers with the ability to
interface with database files and the information present in them.

File Name
 DBENG3.VBX

Object Type

 DBEngine

Remarks

 The DBEngine custom control is used to interface Visual Basic and Visual C++ to database
tables (files). Using this custom control Visual Basic and Visual C++ programmers have access to
multi-user, network compatible database resources.

 The control has a few standard properties along with several DBEngine specific properties.
Since this control has been designed primarily to support Visual Basic and Visual C++
programmers through code, there are no special "Visual" properties or elements in the DBEngine
custom control. As a matter of fact, the custom control itself is intended to be invisible at run-time.

 You are able to interactively manipulate database tables at design time with the
DBEngine control. Examples detailing how to interact with the DBEngine custom
control in design mode are present in the DBEngine Programmer's Guide. (You may
wish to practice DBEngine operations at design time to get familiar with the control.)

 Before you are able to manipulate database tables those tables must already exist.
The VBENGINE DATABASE TABLE MAKER utility program (shareware) allows you to
create PARADOX tables (those used with the DBEngine custom control) interactively.
With the DBEngine (version 3.0) custom control, you are now able to create
Paradox tables in design mode as well as through code using the
CreateTable Action.
6

Distribution Note

 When you create and distribute applications which use the DBEngine custom control you
should install the files DBENG3.VBX and PXENGWIN.DLL in the customer's Microsoft Windows \
SYSTEM subdirectory.

Properties
The properties for this control are listed below. Properties that apply only to this control are
marked with an asterisk.

*Action *IndexID *NRecords *TableFound
*FieldBlank *IndexNFields *OtherTable *TableLockType
*FieldName *IndexType *Password *TableName
*FieldNumber *KeySearch *Reaction *TableProtected
*FieldType Left *RecordLocked *TableType
*FieldValue *MemoOffset *SaveEveryChange Tag
*IndexCase *MemoSize *SearchMode Top
*IndexFieldName Name *TableChanged Visible
*IndexFieldNames *NFields *TableFieldNames
*IndexFile *NKeyFields *TableFieldTypes

Action
Description

 All database operations such as opening a database file, getting a record, getting a value from
a field, etc. are classified as Actions. There are fifty-three DBEngine Actions available for use in
this version 3.0 release of the DBEngine.

Remarks

 The Action property settings are:

Setting Description

0 None (No action)
1 AddPassword
2 AddRecords
3 AppendRecord
4 ClearRecord
5 CloseTable
6 CopyTable

7

7 CreateIndex
8 CreateTable
9 DecryptTable
10 DeleteIndex
11 DeleteRecord
12 DeleteTable
13 EncryptTable
14 FindTable
15 FirstRecord
16 FlushBuffers
17 GetField
18 GetFieldName
19 GetFieldNumber
20 GetFieldType
21 GetRecord
22 GetRecordNumber
23 GotoLock
24 GotoRecord
25 InsertRecord
26 IsFieldBlank
27 IsRecordLocked
28 IsTableProtected
29 LastRecord
30 LockRecord
31 LockTable
32 MapKey
33 NextRecord
34 NFields
35 NKeyFields
36 NRecords
37 OpenTable
38 PreviousRecord
39 PutBlank
40 PutField
41 QueryKey
42 RefreshTable
43 RemovePassword
44 RemoveRecords
45 RenameTable
46 SearchField
47 SearchKey
48 TableChanged
49 UnlockRecord
50 UnlockTable
51 UpdateRecord
52 UpgradeTable

Note: These Actions are defined in the DBENG3.TXT file as symbolic constants. Programmers
working in the Visual Basic 3.0 development environment should use the constants provided in
the DB2VB3.TXT file.

DataType

8

Integer (Enumerated)

DBEngine Actions

0-None

Description

 This Action does nothing.

1-AddPassword

Description

 Enters a password into the system.

Remarks

 This Action enters a password into the system. Up to 50 passwords can be concurrently active.
No password may exceed 15 characters. The password to be added should be present in
DBEngine.Password. Upon a successful AddPassword Action, the Reaction property will
contain a zero (0). In the event of an error, a non-zero error number is placed in the Reaction
property.

See Also

RemovePassword, EncryptTable, DecryptTable, and IsTableProtected.

2-AddRecords

Description

 Adds records from one table to another table.

Remarks

 This Action adds records from the table specified in DBEngine.TableName to the table
specified in DBEngine.OtherTable. If a key violation occurs, the record is overwritten. Both
tables must exist and have compatible structures. Upon a successful Action the Reaction
property will contain a zero (0). In the event of an error, a non-zero error number is placed in the
Reaction property.

See Also

9

RemoveRecords.

3-AppendRecord

Description

 Appends a record to a database table.

Remarks

 This Action writes (appends) the record to the database file. If the database is indexed the
AppendRecord Action works similar to the InsertRecord Action and the record is inserted into
the database file at a place determined by the database index. If the database file is not indexed
the appended record is added to the end of the database file. In both cases the newly appended
record becomes the current record. Upon a successful Action the Reaction property will contain a
zero (0). In the event of an error, a non-zero error number is placed in the Reaction property.

See Also

InsertRecord, UpdateRecord, DeleteRecord.

4-ClearRecord

Description

Clears out the current record for the specified database table.

Remarks

This function clears the DBEngine's internal record information. Specifically all
internal information for the DBEngine's record structure is erased. It is a convienient
way to clear all the field values for a specific record and is functionally equivalent to
doing the PutBlank Action for each and every field. Upon a successfull
ClearRecord Action, an integer value of zero (0) is placed in the DBEngine's
Reaction property. In the event of an error, a non-zero integer error value is placed
in the Reaction property.

See Also PutBlank

5-CloseTable
Description

Closes a previously opened database table.

Remarks

This Action ensures that all buffered data is saved to disk and all memory allocated
10

for the open table is released when the table is properly closed. When a Visual Basic
or a Visual C++ Program is finished with a database table it should do a CloseTable
Action to insure that the table is properly closed and that no data is lost.
Upon a successfull CloseTable Action, an integer value of zero (0) is placed in the
DBEngine's Reaction property. In the event of an error, a non-zero integer error
value is placed in the Reaction property.

See Also

OpenTable

6-CopyTable
Description

Copies one table family to another.

Remarks

This Action copies a complete table (records included) and any family members to
another identical table. The target destination table will be created if it does not
exist. The table copied is the table specified in DBEngine.TableName and the target
destination table is specified in DBEngine.OtherTable. Upon a successfull
CopyTable Action, an integer value of zero (0) is placed in the DBEngine's Reaction
property. In the event of an error, a non-zero integer error value is placed in the
Reaction property.

7-CreateIndex
Description

Creates an index for a database table.

Remarks

This Action creates an index (primary or secondary) on a table. The database table is
specified in DBEngine.TableName. The number of key fields in the index is
specified in DBEngine.IndexNFields (this should be 1 for all secondary indexes).
The field number of the key field is specified in DBEngine.IndexID (for primary
indexes this should always be 1, for secondary indexes it should be the field number
of the field of interest). Case-insensitive and composite secondary indexes should
obtain a special IndexID by performing a MapKey Action before performing a
CreateIndex Action. The type of index to be created is specified in
DBEngine.IndexType. This property can have the following values:

11

0-Primary
1-NonMaintainedSecondary
2-MaintainedSecondary

 Upon a successfull CreateIndex Action, an integer value of zero (0) is placed in the
DBEngine's Reaction property. In the event of an error, a non-zero integer error
value is placed in the Reaction property.

See Also

DeleteIndex.

8-CreateTable
Description

Creates a database table.

Remarks

This Action creates a database table. The name of the new table is specified in
DBEngine.TableName. The number of fields that make up the new table's record
structure is specified in DBEngine.NFields.

The name of each field (each field separated by a comma) is specified in
DBEngine.TableFieldNames. The sequence of the field names placed in
DBEngine.TableFieldNames determines the sequence of the fields in the new table's
record structure.

Each of the fields specified in DBEngine.TableFieldNames must have a corresponding
field type specified in DBEngine.TableFieldTypes. Again each field type is
separated by a comma. The ordering sequence of the field types should follow a one-
to-one correspondence with the field names placed in DBEngine.TableFieldNames.

Field names can each have a maximum of 25 characters. Field types 4 characters.

Each field name is separated from other field names by a comma. Note that the last
field name in the list of field names should not have a comma after it.

Each field type is separated from other field types by a comma. Note that the last
field type in the list of field types should not have a comma after it.

Upon a successfull CreateTable Action, an integer value of zero (0) is placed in the
DBEngine's Reaction property. In the event of an error, a non-zero integer error
value is placed in the Reaction property.

See Also

CreateIndex, and DeleteTable.

12

9-DecryptTable
Description

Decrypts a database table.

Remarks

This Action decrypts a previously encrypted table. The target table is specified in
DBEngine.TableName. In order to successfully decrypt a table you must have
previously entered the required password via a AddPassword Action. Programmers
can check to see if a table is protected (encrypted) by performing an
IsTableProtected Action. If the table is protected the DBEngine.TableProtected
property setting will be True, if not protected it will be set to False. Upon a successfull
DecryptTable Action, an integer value of zero (0) is placed in the DBEngine's
Reaction property. In the event of an error, a non-zero integer error value is placed
in the Reaction property.

See Also

EncryptTable, AddPassword, and RemovePassword.

10-DeleteIndex
Description

Deletes a database index.

Remarks

This Action deletes either a primary or secondary index for the table specified in
DBEngine.TableName. The specific index to be deleted is specified in
DBEngine.IndexID. Upon a successfull DeleteIndex Action, an integer value of
zero (0) is placed in the DBEngine's Reaction property. In the event of an error, a
non-zero integer error value is placed in the Reaction property.

See Also

CreateIndex, MapKey, and QueryKey.

11-DeleteRecord

Description

Deletes the current record from the database table.

Remarks
13

This Action deletes the current record from the database table. The database table
and the current record are contained inside the DBEngine control. After successfully
deleting a record the DBEngine's current record pointer is adjusted and the new
current record is dependent upon the table image (active index). Upon a successfull
DeleteRecord Action, an integer value of zero (0) is placed in the DBEngine's
Reaction property. In the event of an error, a non-zero integer error value is placed
in the Reaction property.

12-DeleteTable

Description

Deletes a database table.

Remarks

This Action deletes a database table (and any of the tables family objects). The
database table to be deleted is specified in DBEngine.TableName . Upon a
successfull DeleteTable Action, an integer value of zero (0) is placed in the
DBEngine's Reaction property. In the event of an error, a non-zero integer error
value is placed in the Reaction property.

See Also

DeleteIndex, and CreateTable.

13-EncryptTable

Description

Encrypts a database table.

Remarks

This Action encrypts a database table. The database table to be encrypted is
specified in DBEngine.TableName . In order to successfully encrypt a database
table you must have previously entered a valid password into the system via a
AddPassword Action. Once a Table is successfully encrypted, subsequent
IsTableProtected Actions will set the DBEngine.TableProtected property to 1-
True. Upon a successfull EncryptTable Action, an integer value of zero (0) is placed
in the DBEngine's Reaction property. In the event of an error, a non-zero integer
error value is placed in the Reaction property.

See Also

14

AddPassword, RemovePassword, and DecryptTable.

14-FindTable

Description

Checks to see if a table exists.

Remarks

This Action checks to see if the table specified in DBEngine.TableName exists. If
the table is found the TableFound property is set to 1-True. If the table was not
found the TableFound property is set to 0-False. Upon a successfull FindTable
Action, an integer value of zero (0) is placed in the DBEngine's Reaction property. In
the event of an error, a non-zero integer error value is placed in the Reaction
property.

15-FirstRecord

Description

Positions the current record on the first record in the database table.

Remarks

This Action, if successfull, moves to the first record in the database table and makes
that record the current record. The database table and the current record for that
table exist in the DBEngine control.

Upon a successfull FirstRecord Action, an integer value of zero (0) is placed in the
DBEngine's Reaction property. In the event of an error, a non-zero integer error
value is placed in the Reaction property.

See Also

LastRecord, NextRecord and PreviousRecord.

16-FlushBuffers

Description

Saves all changes to disk.
15

Remarks

This Action, if successfull, saves all changes to disk. This action is used when the
SaveEveryChange property is set to 0-False. Upon a successfull FlushBuffers
Action, an integer value of zero (0) is placed in the DBEngine's Reaction property. In
the event of an error, a non-zero integer error value is placed in the Reaction
property.

See Also

SaveEveryChange property.

17-GetField

Description

Reads the value of a specified field from the current record of a database table.

Remarks

This Action reads the value of the field specified by DBEngine.FieldName and
places that field's value in DBEngine.FieldValue. The field value read is that of the
current record in the database table. All field values placed in DBEngine.FieldValue
are of type string regardless of the actual data type stored in the table itself (The
DBEngine custom control automatically performs data type conversion of field values
based on the field's data type as specified in the database table.) Upon a successfull
GetField Action, an integer value of zero (0) is placed in the DBEngine's Reaction
property. In the event of an error, a non-zero integer error value is placed in the
Reaction property.

See Also

GetFieldName, GetFieldNumber, GetFieldType, and PutField.

18-GetFieldName

Description

Reads the name of a database field.

Remarks

This Action reads the value of the field specified by DBEngine.FieldNumber and
places that field's name in DBEngine.FieldName. Upon a successfull
GetFieldName Action, an integer value of zero (0) is placed in the DBEngine's
Reaction property. In the event of an error, a non-zero integer error value is placed
in the Reaction property.
16

See Also

GetField, GetFieldNumber, GetFieldType, and PutField.

19-GetFieldNumber

Description

Reads the field number of a database field.

Remarks

This Action reads the number of the field specified by DBEngine.FieldName and
places that field's number in DBEngine.FieldNumber. Upon a successfull
GetFieldNumber Action, an integer value of zero (0) is placed in the DBEngine's
Reaction property. In the event of an error, a non-zero integer error value is placed
in the Reaction property.

See Also

GetField, GetFieldName, GetFieldType, and PutField.

20-GetFieldType

Description

Gets the data type for a database field.

Remarks

This Action returns the data type of the field specified in DBEngine.FieldName. You
use this function when you wish to determine the actual data type of the field as it is
stored in the database table. The possible data types returned are as follows:

Field Type Size Data Type
 --

 N 8 Numeric
 S 2 Short number
 $ 8 Currency
 Annn 1-255 Alphanumeric
 D 4 Date
 Mn n(1-240) Memo BLOB
 Fn n(1-240) Formatted memo BLOB*
 Bn n(1-240) Binary BLOB*
 Gn n(1-240) Graphic BLOB*
 On n(1-240) OLE BLOB*

17

Note: The DBEngine (version 3.0) custom control can only read/write Memo BLOB
types.
* These BLOB types are not supported in read/write operations in release 3.0.

The field type is returned in the DBEngine.FieldType property. Upon a successfull
GetFieldType Action, an integer value of zero (0) is placed in the DBEngine's
Reaction property. In the event of an error, a non-zero integer error value is placed
in the Reaction property.

21-GetRecord

Description

Reads the current record in the database table.

Remarks

This Action, if successfull, reads the current record in the database table.The
database table and the current record for that table are present in the DBEngine
control. You must perform a GetRecord Action before perfoming any GetField
Actions. Upon a successfull GetRecord Action, an integer value of zero (0) is
placed in the DBEngine's Reaction property. In the event of an error, a non-zero
integer error value is placed in the Reaction property.

See Also

FirstRecord, LastRecord, NextRecord and PreviousRecord.

22-GetRecordNumber
Description

Gets the database record number of the current record.

Syntax

Remarks

The GetRecordNumber Action gets the record number of the current record. The
current record and database table are present in the DBEngine control. The record
number is placed in the DBEngine.RecordNumber property. Upon a successfull
GetRecordNumber Action, an integer value of zero (0) is placed in the DBEngine's
Reaction property. In the event of an error, a non-zero integer error value is placed
in the Reaction property.

18

23-GotoLock

Description

Moves to a previously locked record.

Remarks

This Action, if successfull, moves to the previously locked record. To read the locked
record you must perform a GetRecord Action. Upon a successfull GotoLock Action,
an integer value of zero (0) is placed in the DBEngine's Reaction property. In the
event of an error, a non-zero integer error value is placed in the Reaction property.

See Also

LockRecord.

24-GotoRecord

Description

Goes to the specified record number in the database table and makes that record the
current record.

Remarks

This Action moves to the DBEngine.RecordNumber record in the database table
and makes that record the current record. To read the record you must perform a
GetRecord Action. Upon a successfull GotoRecord Action, an integer value of zero
(0) is placed in the DBEngine's Reaction property. In the event of an error, a non-
zero integer error value is placed in the Reaction property

25-InsertRecord
Description

Inserts a record into the database table file.

Remarks

This Action inserts a record into the database table file. If the database file is indexed
the InsertRecord Action works similar to the AppendRecord Action and the record
is inserted in the database file at a location specified by the database index. If the
database file is not indexed the new record is inserted before the current record. In
both cases the newly inserted record becomes the current record. Upon a successfull
InsertRecord Action, an integer value of zero (0) is placed in the DBEngine's
Reaction property. In the event of an error, a non-zero integer error value is placed

19

in the Reaction property.

See Also

AppendRecord, UpdateRecord, DeleteRecord.

26-IsFieldBlank
Description

Tests to see if a field is blank.

Remarks

This Action tests to see if the field specified in DBEngine.FieldNumber is blank. If
the field value is blank the FieldBlank property is set to 1-True. If the field value is
not blank, the FieldBlank property is set to 0-False. Upon a successfull
IsFieldBlank Action, an integer value of zero (0) is placed in the DBEngine's
Reaction property. In the event of an error, a non-zero integer error value is placed
in the Reaction property.

See Also

PutBlank and the FieldBlank property.

27-IsRecordLocked
Description

Tests to see if the current database record is locked.

Remarks

This Action tests to see if the current record is locked. If the current record is locked
the RecordLocked property is set to 1-True. If the current record is not locked, the
RecordLocked property is set to 0-False. Upon a successfull IsRecordLocked
Action, an integer value of zero (0) is placed in the DBEngine's Reaction property. In
the event of an error, a non-zero integer error value is placed in the Reaction
property.

See Also

LockRecord and UnlockRecord.

28-IsTableProtected

20

Description

Tests to see if a table is encrypted.

Remarks

This Action tests to see if a table is encrypted. If the table specified in
DBEngine.TableName is encrypted, the TableProtected property is set to 1-True.
Otherwise the TableProtected property is set to 0-False. Upon a successfull
IsTableProtected Action, an integer value of zero (0) is placed in the DBEngine's
Reaction property. In the event of an error, a non-zero integer error value is placed
in the Reaction property.

See Also

EncryptTable and DecryptTable.

29-LastRecord

Description

Moves to the last record in the database table.

Remarks

This Action moves to the last record in the database table and makes that record the
current record. To read information present in the current record you must perform a
GetRecord Action. Upon a successfull LastRecord Action, an integer value of zero
(0) is placed in the DBEngine's Reaction property. In the event of an error, a non-
zero integer error value is placed in the Reaction property.

See Also

FirstRecord, NextRecord and PreviousRecord

30-LockRecord

Description

Locks the current database record.

Remarks

This Action locks the current record. The database table and it's current record are
specified in the DBEngine control. Once the record is successfully locked, no other
users are able to delete, or otherwise write to the record until the record is unlocked
21

with an UnlockRecord Action. Upon a successfull LockRecord Action, an integer
value of zero (0) is placed in the DBEngine's Reaction property. In the event of an
error, a non-zero integer error value is placed in the Reaction property.

See Also

UnlockRecord

31-LockTable

Description

Locks a database table.

Remarks

This Action locks the database table specified in DBEngine.TableName. The type of
lock applied to the table is specified in DBEngine.TableLockType. Upon a
successfull LockTable Action, an integer value of zero (0) is placed in the
DBEngine's Reaction property. In the event of an error, a non-zero integer error
value is placed in the Reaction property.

See Also

UnlockTable and TableLockType property.

32-MapKey

Description

Obtains an IndexID for a composite or case-insensitive, single field index.

Remarks

This Action maps an ordered set of fields or a case-insensitive single field index to a
special IndexID which can be used as an index in key search operations. The
MapKey Action expects certain information to be present in specific DBEngine
properties:

DBEngine.TableName specifies the target database table.

DBEngine.IndexNFields specifies the number of key fields composing the
index.

DBEngine.IndexFieldNames specifies the individual fields composing
the index (fields are separated from one another by commas.)

DBEngine.IndexFieldName specifies the name of the new key field.
(the name you wish to use to reference this key field by in subsequent database

22

operations - 25 characters maximum. This field name must be unique and cannot be
equal to any of the Table's other existing field names.)

DBEngine.IndexCase specifies whether the new index will be a
case-sensitive or case-insensitive index.

After a successfull MapKey Action, the IndexID property will have a value (>255)
which will be used to reference this special key in subsequent database operations.

Upon a successfull MapKey Action, an integer value of zero (0) is placed in the
DBEngine's Reaction property. In the event of an error, a non-zero integer error
value is placed in the Reaction property.

See Also

CreateIndex, and QueryKey.

33-NextRecord

Description

Moves to the next record in the database table.

Remarks

This Action moves to the next record in the database table and makes that record the
current record (to read the new record you must perform a GetRecord Action.) The
database table is specified in the DBEngine control. Upon a successfull NextRecord
Action, an integer value of zero (0) is placed in the DBEngine's Reaction property. In
the event of an error, a non-zero integer error value is placed in the Reaction
property.

See Also

FirstRecord, LastRecord, and PreviousRecord.

34-NFields

Description

Gets the number of fields in the database record structure.

Remarks

This Action gets the total number of fields present in the database table's record
structure. The database table is specified in DBEngine.TableName. The number of

23

fields present in the record structure is placed in the DBEngine.NFields property.
Upon a successfull NFields Action, an integer value of zero (0) is placed in the
DBEngine's Reaction property. In the event of an error, a non-zero integer error
value is placed in the Reaction property.

See Also

NKeyFields.

35-NKeyFields

Description

Gets the number of key fields in the database record structure.

Remarks

This Action gets the total number of key fields present in the database table's record
structure. The database table is specified in DBEngine.TableName. The number of
key fields present in the record structure is placed in the DBEngine.NKeyFields
property. Upon a successfull NKeyFields Action, an integer value of zero (0) is
placed in the DBEngine's Reaction property. In the event of an error, a non-zero
integer error value is placed in the Reaction property.

See Also

NFields.

36-NRecords

Description

Gets the number of records present in the database table.

Remarks

This Action gets the total number of records present in the database table specified
in the DBEngine control. The number of records is placed in the
DBEngine.NRecords property. Upon a successfull NRecords Action, an integer
value of zero (0) is placed in the DBEngine's Reaction property. In the event of an
error, a non-zero integer error value is placed in the Reaction property.

37-OpenTable
24

Description

Opens a database table file for subsequent processing.

Remarks

Before you can process information in a database table file, you must first open that
file for processing. You open database table files by performing the OpenTable
Action. To successfully open a database table you will need to specify three other
DBEngine properties:

DBEngine.TableName
DBEngine.IndexID
DBEngine.SaveEveryChange

DBEngine.TableName should hold the name of the database table file including any
MSDOS PATH specifier. Do not include the file extension.

DBEngine.IndexID should specify the index you wish to use for table operations.
MasterIndex (0) - should be used to open the table with all of it's associated
indexes. For a specific index, specify the field number of the associated index.

DBEngine.SaveEveryChange should specify whether you wish to save every
change to disk or whether you wish to buffer changes to disk. Buffering is faster, but
you may lose data if the power goes out (see FlushBuffers for information on writing
buffered data to disk). To buffer changes set this parameter to FALSE.

Once these three DBEngine properties have been appropriately set, perform an
OpenTable Action to open the database table. Upon a successfull OpenTable
Action, an integer value of zero (0) is placed in the DBEngine's Reaction property. In
the event of an error, a non-zero integer error value is placed in the Reaction
property.

See Also

CloseTable, FlushBuffers.

38-PreviousRecord

Description

Moves to the previous record in the database table.

Remarks

This Action moves to the previous record in the database table and makes that record
25

the current record (to read the record perform a GetRecord Action.) The database
table is specified in the DBEngine control. Upon a successfull PreviousRecord
Action, an integer value of zero (0) is placed in the DBEngine's Reaction property. In
the event of an error, a non-zero integer error value is placed in the Reaction
property.

See Also

FirstRecord, LastRecord, and NextRecord.

39-PutBlank

Description

Places a blank value into the specified field in the database record.

Remarks

This Action places a blank value into the field specified in the DBEngine.FieldName
property. The field value is not written to the database table until the record is written
to disk using either InsertRecord, AppendRecord, or UpdateRecord Actions. A
blank value of the appropriate data type is placed in the field automatically. A blank
value is a valid value which represents the fact that the value has yet to be entered
(a blank value is not zero.) Upon a successfull PutBlank Action, an integer value of
zero (0) is placed in the DBEngine's Reaction property. In the event of an error, a
non-zero integer error value is placed in the Reaction property.

40-PutField

Description

Places a field value into the specified field in the database record.

Remarks

This Action places the value found in DBEngine.FieldValue for the field
DBEngine.FieldName into the database record. The record in the database table
file is not actually modified until an InsertRecord, AppendRecord, or
UpdateRecord Action is performed. The table and record for the operation is
specified by the DBEngine control. All field values to be written to a database field
are placed in DBEngine.FieldValue and are of type String regardless of the actual
data type of the field in the database table itself. The PutField Action automatically
converts the value to the appropriate type before placing it in the database record.
26

Upon a successfull PutField Action, an integer value of zero (0) is placed in the
DBEngine's Reaction property. In the event of an error, a non-zero integer error
value is placed in the Reaction property.

See Also

GetField, PutBlank.

41-QueryKey

Description

Gives information about a database index..

Remarks

This Action places information concerning the index file specified in
DBEngine.IndexFile into several of the DBEngines properties:

DBEngine.IndexFieldName specifies the field name of the index key
field.

DBEngine.IndexNFields specifies the number of key fields composing the
index.

DBEngine.IndexCase specifies whether the index is a case-
sensitive or case-insensitive index.

DBEngine.IndexFieldNames specifies the key fields of the index (field
names separated by a comma.)

DBEngine.IndexID specifies the I.D. for the index.

Upon a successfull QueryKey Action, an integer value of zero (0) is placed in the
DBEngine's Reaction property. In the event of an error, a non-zero integer error
value is placed in the Reaction property.

See Also

MapKey.

42-RefreshTable

27

Description

Refreshes or updates a table image to reveal up-to-the minute changes.

Remarks

This Action updates the table image to reflect any changes to data that other users
may have made since your last table refresh. The following Actions automatically
refresh a table image RecordLock, UpdateRecord, InsertRecord,
AppendRecord, and DeleteRecord. Upon a successfull RefreshTable Action, an
integer value of zero (0) is placed in the DBEngine's Reaction property. In the event
of an error, a non-zero integer error value is placed in the Reaction property.

43-RemovePassword

Description

Removes a previously entered password from the system.

Remarks

This Action removes a previously entered password (entered via AddPassword
Action) from the system. The password to be removed should be present in
DBEngine.Password. Upon a successfull RemovePassword Action, an integer
value of zero (0) is placed in the DBEngine's Reaction property. In the event of an
error, a non-zero integer error value is placed in the Reaction property.

See Also

AddPassword, EncryptTable, DecryptTable and IsTableProtected.

44-RemoveRecords

Description

Removes all the records from a database table.

Remarks

This Action removes all records from the database table specifed in
DBEngine.TableName. Upon a successfull RemoveRecords Action, an integer
value of zero (0) is placed in the DBEngine's Reaction property. In the event of an
error, a non-zero integer error value is placed in the Reaction property.

28

45-RenameTable

Description

Renames a database table.

Remarks

This Action renames a database table (and table family members if any.) The table is
specified in DBEngine.TableName. The new name for the table is specified in
DBEngine.OtherTable. Upon a successfull RenameTable Action, an integer value
of zero (0) is placed in the DBEngine's Reaction property. In the event of an error, a
non-zero integer error value is placed in the Reaction property.

46-SearchField

Description

Searches a database table file on a specified field.

Remarks

This Action searches through the database table for a value in a field. The database
field searched on is specified by DBEngine.FieldName the field value to search for
is specified by DBEngine.FieldValue. You need to set these two properties and then
perform the PutField Action. After that you need to specify your search mode
preference by setting DBEngine.SearchMode to one of three values:

- SEARCHFIRST
- SEARCHNEXT
- CLOSESTRECORD

SEARCHFIRST begins the search at the first record in the database, the record
position of the current record is not changed if a search attempt fails to find a match.

SEARCHNEXT begins with the record following the current record in the database,
the record position of the current record is not changed if a search attempt fails to
find a match.

CLOSESTRECORD begins to search at the first record in the database, if a record is
not found (search attempt fails), one of two possibilities exist:

-If there is no exact match, and there happens to be a record which has a value
lexically greater than the search value. The current record in the database will be the
record with the first such instance and a record not found error (89) returned in the
DBEngine.Reaction property.

- There is no record in the database that has a value greater or equal to the search

29

value. The current record will be the last record in the database and a record not
found error (89) returned.

A search can then be started with a call to the SearchField function.

The available search modes rely on the index on which the table is currently using.
SearchField always searches for the first record which fullfills the search criteria. On
non-indexed database tables SearchField searches via a sequential scan. The order
of the records searched through the sequntial scan is that of the physical order of the
records in the table itself. In non-indexed tables CLOSESTRECORD is not supported.
Upon a successfull SearchField Action, an integer value of zero (0) is placed in the
DBEngine's Reaction property. In the event of an error, a non-zero integer error
value is placed in the Reaction property.

See Also

SearchKey

47-SearchKey

Description

Searches a database table for a key match.

Remarks

This Action searches the table specified in DBEngine.TableName on the Primary
index. A search match is sought on the key field(s) of the table specified by
DBEngine.SearchKey. The key to be matched must be the primary key or a subset
of the primary key. The fields to be matched are the fields which have been placed
into the database engine's record buffer via PutField Actions.

If there are five key fields and you are only interested in finding records which have
specific values in the first two key fields lets say "Date" and "Customer Name", you
want to search for records in the database that have 12/12/92 for the "Date" value
and "Robert Smith" for the "Customer Name" you would set the criteria for those
fields and place them in the database engine via PutField Actions. Your KeySearch
would be set up as DBEngine.KeySearch = 2.

You need to specify your search mode preference by setting DBEngine.SearchMode
to one of three values:

- SEARCHFIRST
- SEARCHNEXT
- CLOSESTRECORD

30

SEARCHFIRST begins the search at the first record in the database, the record
position of the current record is not changed if a search attempt fails to find a match.

SEARCHNEXT begins with the record following the current record in the database,
the record position of the current record is not changed if a search attempt fails to
find a match.

CLOSESTRECORD begins to search at the first record in the database, if a record is
not found (search attempt fails), one of two possibilities exist:

-If there is no exact match, there happens to be a record which has a value lexically
greater than the search value. The current record in the database will be the record
with the first such instance and a record not found error (89) returned.

- There is no record in the database that has a value greater or equal to the search
value. The current record will be the last record in the database and a record not
found error (101) returned.

The available search modes rely on the index on which the table is currently using.
SearchKey always searches for the first record that fullfills the search criteria. Once
the desired key fields have been set-up and submitted via PutField Actions, the
desired search mode specified, along with the keysearch specification, you can then
do a SearchKey Action. Upon a successfull SearchKey Action, an integer value of
zero (0) is placed in the DBEngine's Reaction property. In the event of an error, a
non-zero integer error value is placed in the Reaction property.

See Also

SearchField.

48-TableChanged

Description

Indicates if table imaged has been changed by other users.

Remarks

This Action indicates whether a database table image has been significantly changed
by other users (enough to warrant a RefreshTable Action.) The table is specified in
DBEngine.TableName. If the table image has been changed the
DBEngine.TableChanged property is set to 1-True, otherwise it is set to 0-False.

Upon a successfull TableChanged Action, an integer value of zero (0) is placed in
the DBEngine's Reaction property. In the event of an error, a non-zero integer error
value is placed in the Reaction property.

31

See Also

RefreshTable

49-UnlockRecord

Description

Unlocks a previously locked record.

Remarks

This Action unlocks a previously locked record. You are only able to unlock records
that you have previously locked. You can not unlock records locked by other users. A
locked record can also be unlocked under the following conditionss:

- You delete the record by performing a DeleteRecord Action.
- You do a CloseTable Action which unlocks all the records in that table before
closing the table.

Upon a successfull UnlockRecord Action, an integer value of zero (0) is placed in
the DBEngine's Reaction property. In the event of an error, a non-zero integer error
value is placed in the Reaction property.

See Also

LockRecord

50-UnlockTable

Description

Unlocks a previously locked database table.

Remarks

This Action unlocks a previously locked database table. The table is specified in
DBEngine.TableName. The table lock type must be specified in
DBEngine.TableLockType.
Upon a successfull UnlockTable Action, an integer value of zero (0) is placed in the
DBEngine's Reaction property. In the event of an error, a non-zero integer error
value is placed in the Reaction property.

See Also

LockTable

32

51-UpdateRecord

Description

Updates a record in a database table.

Remarks

This Action updates the record specified in the DBEngine control to the database file.
There must be a current database record to update. Upon a successfull
UnlockRecord Action, an integer value of zero (0) is placed in the DBEngine's
Reaction property. In the event of an error, a non-zero integer error value is placed
in the Reaction property.

See Also

AppendRecord, InsertRecord, DeleteRecord.

52-UpgradeTable

Description

Upgrades an older Paradox table (3.5 or later) to Paradox 4.0 table format.

Remarks

This Action upgrades an older Paradox table to the new Paradox 4.0 table format.
Upon a successfull UpgradeTable Action, an integer value of zero (0) is placed in
the DBEngine's Reaction property. In the event of an error, a non-zero integer error
value is placed in the Reaction property.

FieldBlank
Description

 This property is an integer value which represents whether or not a database field is blank.

 This property is not automatically managed for reasons of performance. You should only
consider this property's value valid directly after performing an IsFieldBlank Action.

 This property may have the following values:

33

Setting Description

0 False
1 True

DataType

Integer (Enumerated)

FieldName
Description

 This property is an ASCII string with a maximum length of 25 characters. This string holds the
name of the target database field.

DataType

String

FieldNumber
Description

 This property is an integer value which represents the field's position in the table's record
structure.

 This property is not automatically managed for reasons of performance. You should only
consider this property's value valid directly after entering it manually or after performing a
GetFieldNumber Action.

DataType

Integer

FieldType
Description

 This property is an ASCII string with a maximum length of 5 characters. This property holds the
data type of the target database field.

Database Field Types
34

 Each field in a database has a corresponding data type. The available field types in
the DBEngine (version 3.0) release are listed below:

Field Type Size Data Type
 --

 N 8 Numeric
 S 2 Short number
 $ 8 Currency
 Annn 1-255 Alphanumeric
 D 4 Date
 Mn n(1-240) Memo BLOB
 Fn n(1-240) Formatted memo BLOB*
 Bn n(1-240) Binary BLOB*
 Gn n(1-240) Graphic BLOB*
 On n(1-240) OLE BLOB*

Note: The DBEngine (version 3.0) custom control can only read/write Memo BLOB
types.
* These BLOB types are not supported in read/write operations in release 3.0.

Alphanumeric (A) field type permits the full ASCII character set (except ASCII 0)
and is used for entry of string data types. Fields of this type are specified as Axxx,
where the xxx represents the maximum length of the field in characters. For
example, if you were to create a field in a table which is intended to hold a maximum
of 50 characters you would specify the field as an A50.

Number (N) and currency ($) field types permit up to 15 significant digits
(including the decimal point) in the range of real numbers from ±10-307 to ±10307.
Number field values which are greater than 15 significant digits are rounded and
stored in scientific notation. Currency field values are stored in a default predefined
format.

Short Number (S) field types permit values in the range of signed integers. (-
32,767 to 32,767).

Date (D) field types permit any vaild dates between January 1, 100 A.D. to
December 31, 9999. Date values are stored as long integers which represent the
number of days since January 1, A.D.

Memo (M) field type contains text that is variable in length and usually larger than 255 characters.
Fields of this type can be specified as Mn, where the n (1-240) represents how many characters
are actually stored in the database table. The entire memo is also stored in a .MB file which has
the same filename as the table.

BLOB types (F,O,G and B) are not supported in release 3.0.

DataType

String

35

FieldValue
Description

 This property is an ASCII string with a maximum length of approx 64 KB characters. This
property holds the value of the target database field.

Remarks

 DBEngine programming involves handling database field values as strings only!
Regardless of the actual data type in the database file. This is mandated by the
DBEngine's internal data structures. DBEngine programmers receive field values
from data table files as String values and write database field values as String values
regardless of the actual field value type present in the database table file. The
DBEngine automatically performs data type conversions based on the data type of
the field in the database table file. This data type conversion process is transparent
to the Visual Basic/Visual C++ programmer and provides a much simpler interface to
database programming.

DataType

String

IndexCase
Description

 This property is an integer (enumerated) which is used to specify whether an index is case-
sensitive or case-insensitive.

This property may have the following values:

Setting Description

0 CaseSensitive
1 CaseInsensitive

DataType

Integer (Enumerated)

IndexFieldName
Description

 This property is an ASCII string which is used to hold the name of a programmer supplied index
field name. This property is used strictly for the MapKey and QueryKey Actions.
36

DataType

String

IndexFieldNames
Description

 This property is an ASCII string which is used to hold the names of key fields composing an
index. Individual field names must be separated by a comma. The last field name in this list must
not be followed by a comma.

DataType

String

IndexFile
Description

 This property is an ASCII string which is used to hold the name of an index file (a path
specification may be included) for the QueryKey Action.

DataType

String

IndexID
Description

 This property is an integer which holds the identification of the index to be used with the
database table (specified in the DBEngine.TableName property).

Remarks

 This property should be zero (0) to open the database table with all associated indexes.

DataType

Integer

IndexNFields

37

Description

 This property is an integer which holds the number of key fields present in an index. This
property is not automatically maintained.
DataType

Integer

IndexType
Description

 This property is an integer (enumerated) which is used to specify the type of index.

This property may have the following values:

Setting Description

0 Primary
1 NonMaintainedSecondary
2 MaintainedSecondary

DataType

Integer (Enumerated)

KeySearch
Description

 This property is an integer data member which specifies what portion of the databases primary
index to use for index based searches.

Remarks

 All database key fields must be contiguous fields starting with the first field in the database
table. All database searches performed with the SearchKey Action must specify the portion of the
PRIMARY index to search on. For example:

 If there are five key fields in your database table and you are only interested in
finding records which have specific values in the first two key fields lets say "Date"
and "Customer Name", you want to search for records in the database that have
12/12/92 for the "Date" value and "Robert Smith" for the "Customer Name" you
would set the criteria for those fields and place them in the database engine via
PutField Actions. Your KeySearch would be set up as DBEngine.KeySearch = 2.

 An example of how to use key fields and database searches using the SearchKey
38

Action is provided in the DBEngine Custom Control Programmer's Guide.
(Extensive examples of using key fields and database searches using full and partial
keys are provided in the DBEngine Custom Control Programmer's Guide.)

DataType

Integer

MemoOffset
Description

 This property is a long value which is used to mark an offset into a memo field.

Remarks

 This property is used when reading and writing memo fields which are larger than 64 Kilo bytes
in length. Memo fields are sourced (read/written) from a Visual Basic String (HSZ). Visual Basic
strings have a maximum length of 64 KB. When reading/writing memo fields larger than 64 KB
you must do so in chunks of 64 KB.

The MemoOffset property is used in conjunction with the MemoSize property. When reading in
any Memo field the MemoSize property is automatically updated by the DBEngine custom
control. The value present in the MemoSize property will tell you the total length (Size) of the
Memo field (in bytes). If the size indicated by MemoSize is greater than 64 KB, you will need to
read in multiple 64 KB chunks of data. The MemoOffset property provides a means of indexing in
the Memo field relative to MemoSize.

DataType

long

MemoSize
Description

 This property is a long value which is used to determine the total length (in bytes) of a stored
Memo field value.

Remarks

 This property is used when reading memo fields. When reading any Memo field the MemoSize
property is automatically updated to indicate the total size of the stored Memo (in bytes). When
reading in Memo fields which are larger than 64 KB (65, 520 bytes to be exact), you must do so in
chunks of approximately 64 KB. This limitation is imposed on two sides.

1. The Paradox Engine 3.0 can only read/write BLOBs in chunks of 65, 520 bytes. For BLOBs
larger than 65,520 bytes, you must perform multiple read/write operations.

2. The maximum size of a Visual Basic String data type is approximately 64 KB (overhead is
involved). Currently DBEngine Memo fields are read/written through Visual Basic strings (HSZ for
39

Visual C++ users).

All Memo based read/write operations must be performed within the confines of the above two
imposed limitations.

DataType

long

NFields
Description

 This property is an integer value which indicates the number of fields present in the database
table's record structure.

Remarks

 This property is not automatically managed by the DBEngine control due to performance
reasons. Therefore to insure that the value present in this property is as acurate as possible read
the value immediately after performing a NFields Action on the table.

DataType

Integer

NKeyFields
Description

 This property is an integer value which indicates the number of key fields present in the
database table's record structure.

Remarks

 This property is not automatically managed by the DBEngine control due to performance
reasons. Therefore to insure that the value present in this property is as acurate as possible read
the value immediately after performing a NKeyFields Action on the table.

DataType

Integer

NRecords
Description

40

 This property is a long value which indicates the number of records present in the database
table.

Remarks

 This property is not automatically managed by the DBEngine control due to performance
reasons and complications related to network concurrency. Therefore to insure that the value
present in this property is as acurate as possible read the value immediately after performing a
NRecords Action on the table.

DataType

long

OtherTable
Description

 This property is an ASCII string used to hold the name of a database table (path may be
specified.) This property is used in DBEngine actions that reference another table such as
AddRecords, RenameTable, CopyTable, etc.

DataType

string

Password
Description

 This property is an ASCII string used to hold a password for DBEngine Actions such as
AddPassword and RemovePassword. Passwords may have no more than 15 characters.

DataType

string

Reaction
Description

 This property is an integer value which indicates whether or not a DBEngine Action was
performed successfully or not.

Remarks

41

 Its purpose is to report any errors encountered when performing any DBEngine Actions. For a
listing of the possible errors reported after performing DBEngine Actions see the DBEngine /
PARADOX ENGINE ERROR CODES section at the end of this document.

DataType

Integer (Enumerated)

RecordLocked
Description

 This property is an integer (enumerated) which is used to indicate whether or not the current
record is locked.

 This property is not automatically managed, so it should only be considered acurate directly
after perfoming a IsRecordLocked Action.

This property may have the following values:

Setting Description

0 False
1 True

DataType

Integer (Enumerated)

RecordNumber
Description

 This property is a long value which indicates the record number of the current record in the
database table.

Remarks

 This property is not automatically managed by the DBEngine control due to performance
reasons and complications related to network concurrency. Therefore to insure that the value
present in this property is as acurate as possible read the value immediately after performing a
GetRecordNumber Action on the table.

DataType

long

42

SaveEveryChange
Description

 This property is an integer value which indicates whether changes to database tables are done
immediately or buffered to disk.

Remarks

 This property is available to programmers basically for performance reasons. The possible
values of this property are:

Setting Description

0 False (Changes are buffered to disk)
1 True (Changes are made immediately)

DataType

Integer (Enumerated)

SearchMode
Description

 This property is an integer value which indicates the search mode used in database searches.

Remarks

The possible values of this property are:

Setting Description

0 SEARCHFIRST
1 SEARCHNEXT
2 CLOSESTRECORD

SEARCHFIRST begins the search at the first record in the database, the record
position of the current record is not changed if a search attempt fails to find a match.

SEARCHNEXT begins with the record following the current record in the database,
the record position of the current record is not changed if a search attempt fails to
find a match.

CLOSESTRECORD begins to search at the first record in the database, if a record is
43

not found (search attempt fails), one of two possibilities exist:

-If there is no exact match, there happens to be a record which has a value lexically
greater than the search value. The current record in the database will be the record
with the first such instance and a record not found error (89) returned.

- There is no record in the database that has a value greater or equal to the search
value. The current record will be the last record in the database and a record not
found error (101) returned.

DataType

Integer (Enumerated)

TableChanged
Description

 This property is an integer (enumerated) which is used to indicate whether or not the current
table image is still valid.

 This property is not automatically managed, so it should only be considered acurate directly
after perfoming a TableChanged Action.

This property may have the following values:

Setting Description

0 False
1 True

DataType

Integer (Enumerated)

TableFieldNames
Description

 This property is an ASCII string which is used to hold the names of fields in a database table.
Individual field names must be separated by a comma. The last field name in this list must not be
followed by a comma.

 This property is used primarily with the CreateTable Action.

DataType

44

String

TableFieldTypes
Description

 This property is an ASCII string which is used to hold the field types of the fields listed in the
TableFieldNames property. The field types listed must be on a one-to-one correspondence with
the field names in the TableFieldNames property. Individual field names must be separated by a
comma. The last field name in this list must not be followed by a comma.

 This property is used primarily with the CreateTable Action.

DataType

String

TableFound
Description

 This property is an integer (enumerated) which is used to indicate whether or not a table exists.
It is used only with the FindTable Action.

 This property is not automatically managed, so it should only be considered acurate directly
after perfoming a FindTable Action.

This property may have the following values:

Setting Description

0 False
1 True

DataType

Integer (Enumerated)

TableLockType
Description

 This property is an integer (enumerated) which is used to specify the table lock type for the
LockTable and UnlockTable Actions.

This property may have the following values:
45

Setting Description

0 None
1 FullLock
2 WriteLock
3 PreventWriteLock
4 PreventFullLock

DataType

Integer (Enumerated)

TableName
Description

 This property is an ASCII string with a maximum length of 255 characters. This string holds the
name of a database table, including any MSDOS PATH specifier. Database file names placed in
this property must not include a file extension.

DataType

String

TableProtected
Description

 This property is an integer (enumerated) which is used to indicate whether or not a table is
encrypted. It is used only with the IsTableProtected Action.

 This property is not automatically managed, so it should only be considered acurate directly
after perfoming a IsTableProtected Action.

This property may have the following values:

Setting Description

0 False
1 True

DataType

Integer (Enumerated)

46

TableType
Description

 This property is an integer (enumerated) which is used to indicate the type of table (Paradox
3.5 or 4.0.) It is used only with the CreateTable Action.

 The default is Paradox 4.0

This property may have the following values:

Setting Description

0 Paradox35
1 Paradox40

DataType

Integer (Enumerated)

APPENDIX

DBEngine / PARADOX ENGINE
ERROR CODES

Error Code Description

1 Drive not ready
2 Directory not found
3 File is busy
4 File is locked
5 File not found
6 Table damaged
7 Primary index damaged
8 Primary index is out of date
9 Record is locked
10 Sharing violation - directory busy
11 Sharing violation - directory locked
12 No access to directory
13 Sort for index different from table
14 Single user but directory is shared
15 Multiple PARADOX.NET files found

47

21 Insufficient password rights
22 Table is write-protected
30 Data type mismatch
31 Argument is out of range
33 Invalid argument
40 Not enough memory to complete operation
41 Not enough disk space to complete operation
50 Another user deleted record
51 BLOB open mode, action N/A
52 BLOB already open
53 Invalid BLOB offset
54 Invalid BLOB size
55 Other user modified BLOB
56 Bad BLOB file
57 Can not index on BLOB
59 Bad BLOB handle
60 Can not search on BLOB
70 No more file handles available
72 No more table handles available
73 Invalid date given
74 Invalid field name
75 Invalid field handle
76 Invalid table handle
78 Engine not initialized
79 Previous fatal error, cannot proceed
81 Table structures are different
82 Engine already initialized
83 Unable to perform operation on open table
86 No more temporary names available
89 Record was not found
94 Table is indexed
95 Table is no| indexed
96 Secondary index is out of date
97 Key violation
98 Could not login on network
99 Invalid table name
101 End of table
102 Start of table
103 No more record handles available
104 Invalid record handle
105 Operation on empty table
106 Invalid lock code
107 Engine not initialized
108 Invalid file name
109 Invalid lock
110 Invalid lock handle
111 Too many locks on table
112 Invalid sort-order table
113 Invalid net type
114 Invalid directory name
115 Too many passwords specified
116 Invalid password
117 Buffer too small for result
118 Table is busy
119 Table is locked
120 Table was not found
121 Secondary index was not found
122 Secondary index is damaged
123 Secondary index is already open
124 Disk is write-protected
125 Record is too big for index
126 General hardware error
127 Not enough stack space to complete operation
128 Table is full
129 Not enough swap buffer space to complete operation
130 Table is SQL replica
131 Too many clients for Engine DLL
132 Exceeds limits specified in WIN.INI
48

133 Too many files open simultaneously (includes all clients)
134 Can't lock PARADOX.NET - is SHARE.EXE loaded
135 Can't run Engine in Windows real mode
136 Can't modify unkeyed table with non-maintained secondary index
137 Timed out performing lock operation.

49

